The Radiology of Metabolic Bone Disease

Ranju T Dhawan Consultant Radiologist, St Mary's Hospital, London This is an edited version for your intranet learning. Some representative pictures are included. Keep it simple, try and get the big picture and you'll have done enough. If you have any queries you can email me.

Ranju T Dhawan, Consultant Radiologist,
St Mary's Hospital,
Imperial College NHS Healthcare Trust, London
Ranju.Dhawan@imperial.nhs.uk

Systemic disorder of the skeleton resulting from a metabolic disturbance

THE DISEASES

• THE RADIOGRAPHIC SIGNS

• The TOOLS: X-Rays, Densitometry, CT, MRI, Bone Scans

THE DISEASES

- Osteoporosis
- Osteomalacia & Rickets
- Hyperparathyroidism : Primary
- Hyperparathyroidism : Secondary / Renal osteodystrophy

The radiographic signs

- OSTEOPENIA
- OSTEOSCLEROSIS

The TOOLS

- X Rays
- CT Scans
- MRI Scans
- Radionuclide Bone Scans
- Bone Densitometry

X Rays α density

Densitometry α density/attenuation

- CT Scans α density/attenuation
- MRI Scans α chemical / water content
- Radionuclide Bone Scans α Bone turnover NOT density

The Radiographic Signs (not diseases)

- OSTEOPENIA
- OSTEOSCLEROSIS

OsteoPENIA & OsteoSCLEROSIS

Osteopenia, Osteomalaica & Osteoporosis

OsteoPENIA = "Poverty" of bone a sign NOT a disease Seen in both Osteoporosis Osteomalacia

Osteoporosis: decreased bone mass

Osteomalacia: decreased mineralization

OSTEOPOROSIS

Decreased quantity of bone overall (bone mass), microstructure normal

Osteoporosis: Systematic bone loss

OSTEOPOROSIS

OSTEOPOROSIS

- Normal Biochemistry
- Decreased quantity of bone overall (bone mass), microstructure normal
- Fragility Fractures / Deformity /Pain

OSTEOMALACIA

(& Rickets)

Osteomalacia (& Rickets)

Vit D deficiency

Biochemistry: Vit D

 Ca: N /
 PTH
 Inadequate/ Delayed mineralization

Radiology α Age / growth plate closure

OSTEOMALACIA (& Rickets)

 Too little mineral Osteopenic & Soft Bone bends and deforms

Too much osteoid Looser's zones

If Ca stays low secondary hyperparathyroidism may be superimposed

Osteomalacia

- Pseudofracture / 'Loosers Zone'
 - narrow lucency, perpendicular to bone cortex
 - pubic rami, proximal femur, scapula, lower ribs

Osteomalaci

'Codfish' vertebra

- Biconcave loss of height
- Osteopenic
- pencilled-in margin

OSTEOMALACIA

OSTEOPOROSIS

Less mineral

- Osteopenia
- Bend and bow before break
- Codfish vertebrae: unform spine deformity

Less Bone

- Osteopenia
- Break
- Anterior wedging

RICKETS

Osteomalacia of childhood

OSTEOMALACIA

- Changes in mature bone
- Osteopenia
- Looser's Zone's
- Codfish vertebrae
- Bending deformities

RICKETS

- Before growth plate closure
- Changes related to growth plates
 dominate
- Changes of osteomalacia co exist

RICKETS

Metaphysis most rapid growth

= most obvious changes

indistinct frayed metaphyseal margin

widened growth plate (no calcification)

RICKETS

- metaphysis indistinct / frayed margin
- cupping/ splaying metaphyses - due to weight bearing

Rickets

Rickets

Rickety Rosary

• Splayed & cupped anterior ends of ribs

Rickets

• Rickets:

Bowing of weight bearing bones

RICKETS

- metaphysis most rapid growth/most obvious changes
- indistinct frayed metaphyseal margin
- widened growth plate (no calcification)
- cupping/ splaying metaphyses due to weight bearing
- enlargement of anterior ribs (rickety rosary)
- osteopenia

Hyerparathyroidism

1º HPTH Primary (PTH adenoma)

2º HPTH Secondary

3º HPTH Tertiary (autonomous)

Classification of HPT

• Primary HPT : | PTH | Ca | P

• Secondary HPT: | PTH | Ca, n or | P

CRF / Rickets / Osteomalacia

• Tertiary HPT: PTH Ca IP

HPT

Primary (high Ca)

Radiology: Bone Resorption

Secondary (low / N Ca)

Renal osteodystrophy

Resoprtion + Increased density

(ananbolic & resorptive features of PTH

subperiosteal

subchondral

Intracortical

brown tumours

BONE LOSS

SLOW: Involutional Osteoporosis

Bone has time to remodel / bone loss occurs according to mechanical needs

FAST: Hyperparathyroidism / Disuse Osteoporosis
Bone loss is too rapid
Loss does not cater to mechanical needs

-subperiosteal

(radial aspect middle and ring fingers phalanges)

- -subperiosteal
- -subchondral
- -intracortical
- -eg pepper-pot
 skull)

- -subperiosteal
- -subchondral (distal clavicle, pubis)

- -subperiosteal
- -subchondral
- -intracortical
- -brown tumours
 (bigger, ++
 osteoclastic
 activity)

Renal Osteodystrophy (CRF)

Radiology

- Osteomalacia and Osteoporosis
- 2º HPTH

-sub-periosteal erosions, brown tumours,

-sclerosis - axial skeleton/vertebral end plates rugger jersey spine

-soft tissue calcification (arteries/cartilage)

Renal Osteodystrophy (CRF)

Radiology

- Osteomalacia ,
 Osteoporosis
- 2º HPTH

Bone Resorption
Bone Sclerosis
axial skeleton/
vertebral end plates
rugger jersey spine
Soft tissue calcification
(arteries/cartilage)

Renal Osteodystrophy (CRF)

Radiology

- Osteomalacia ,
 Osteoporosis
- 2º HPTH

Bone Resorption
Bone Sclerosis
axial skeleton/
vertebral end plates
rugger jersey spine
Soft tissue calcification
(arteries/cartilage)

BONE: Dynamic System Constantly turning over

Mediators of Bone metabolism

- Ca / P / Vit D / PTH / Calcitonin
- Other hormones: Thyroxine, Growth hormone, Glucocorticoids, Estrogens, Androgens, Insulin
- Other factors: Vit C and other nutrients, Cytokines, Prostaglandins, Several growth factors

BONE

Think
REMODELLING ADAPTING
OSTEOBLASTS / OSTEOCLASTS
FORMATION /RESORPTION

Think:
DYNAMIC not DEAD