METABOLIC BONE DISEASE

Introduction, Overview and Biochemistry

Dr Jeremy PD Cox

St Mary's Hospital, Imperial College

What is metabolic bone disease?

A group of diseases that cause a DECREASE in

bone density bone strength

by

- 1. INCREASING bone resorption
- 2. DECREASING bone formation

And may be associated with disturbances in mineral metabolism

What are the main diseases?

Primary hyperparathyroidism

Rickets/Osteomalacia

Osteoporosis

Paget's Disease

Renal osteodystrophy

Symptoms in these diseases

Metabolic

Hypocalacaemia

Hypercalcaemia

Hypo/Hyperphosphataemia

Bone

Pain

Deformity

Fractures

Bone Calcium

Hydroxyapatite $\text{Ca }^{2+}_{10-x}(\text{H}_30^+)_{2x}(\text{PO}_4^{3-})_6(\text{OH}^-)_2$

Cancellous bone metabolically active

remodelling 5% anytime total skeleton over 7 years

continuous exchange of ECF with bone fluid reserve

Bone strength

QUANTITY

- Cortical thickness
- mineral density
- size

QUALITY

- Architecture
- Bone turnover
- Cortical porosity
- Trabecular connectivity

Tibial bone modeling during growth

Bone structure and function may be assessed in different ways

- Bone histology
- Biochemical tests
- Bone mineral densitometry, e.g. osteoporosis
- Radiology e.g. osteomalacia, Paget's disease

CLINICAL and BIOCHEMICAL FEATURES OF METABOLIC BONE DISEASE

Biochemical Investigations in Metabolic Bone disease

Serum calcium

corrected calcium

albumin

phosphate

parathyroid hormone

25-hydroxy vitamin D

Urine NTX

Calcium

Phosphate

Summary of Biochemical changes in bone disease

Condition	Ca	P	Alk P	Bone form	Bone resorpt
osteoporosis	N	N	N	\uparrow \longrightarrow	† †
osteomalacia	N or		1		
Pagets	N	N	↑ ↑↑	† †	
Primary HPT	1	_	N		† †
Renal osteodystrophy	↓N	1	<u> </u>		
metastases	1	<u> </u>	1		<u> </u>

Serum Calcium

 $Corrected\ calcium = [calcium] + 0.02(45 - [albumin])$

PTH

Extracellular Ca concentration is controlled with < 2 % variation

PTH has the predominant role in minute by minute regulation

Afferent limb - sensing PTH response within seconds to low calcium continued PTH secretion at high calcium levels

Hypocalcaemia

84 amino acid peptide T_{1/2} 8 min N1-34 active Mg dependent

PTH 1/PTHrP receptor

The calcium-sensing receptor

A steep inverse sigmoidal function relates PTH levels and Ca_o²⁺ in vivo.

MINIMUM: even at high calcium levels there is base-line PTH secretion

SET-POINT: point of half maximal suppression of PTH; steep part of slope; Small perturbation causes large change PTH

PTH effect

PTH releases calcium from bone by activating the RANK System

PTH activates vitamin D in the PT of the kidney

PTH increases calcium re-absorption in the DT of the kidney

PTH reduces phosphate re-absorption in the PT of the kidney

Primary hyperparathyroidism

A common disorder affecting 2% postmenopausal women

Causes

Parathyroid adenoma 80%

Parathyroid hyperplasia 20%

Parathyroid CA <1%

Familial Syndromes

MEN 1 2%

MEN 2A rare

Biochemistry of Primary Hyperparathyroidism

- . *Increase serum calcium*, by absorption from bone/gut/kidney
- . *Decrease serum PO4*, as increased absorption is overcome by marked renal excretion
- . *Increase urine calcium excretion*, as increased renal resorption is overcome by the hugely increased filtered load
- . Increase markers of bone resorption

Primary hyperparathyoidism

Clincal Features are due mainly to high calcium

Thirst, polyuria Tiredness, fatigue, muscle weakness

"Stones, abdominal moans and psychic groans"

Renal colic, nephrocalcinosis, CRF

Dyspepsia, pancreatitis Constipation, nausea, anorexia

Depression, impaired concentration Drowsy, coma

Patients may also suffer fractures secondary to bone resorption

Polyuria in Hypercalcaemia

Management of Primary hyperparathyroidism

If high calcium >2.8

young <50 Investigations

complications

osteoporosis BMD

renal stones Renal U/S

renal failure 24hr CrCl

localise ⁹⁹Tc-sestamibi scan

neck U/S

SURGERY

Conservative management

bisphosphonates

Calcimimetics- cinacalcet

VITAMIN D ACTION

Osteomalacia

"inadequate Vitamin D activity leads to defective mineralisation of the cartilagenous growth plate (<u>before</u> a low calcium)"

Symptoms
Bone pain and tenderness (axial)
Muscle weakness (proximal)
Lack of play

Signs
Age dependent deformity
Myopathy
Hypotonia
Short stature
Tenderness on percussion

Osteomalacia - causes

Vitamin D related

Dietary

Gastrointestinal Small bowel malabsorption/ bypass

Pancreatic insufficiency

Liver/biliary disturbance

Drugs- phenytoin, phenobarbitone

Renal Chronic renal failure

Vitamin D dependent rickets type I

autosomal recessive, no 1α-hydroxylation

Resistance Vitamin D dependent rickets type II

autosomal recessive, VDR defect

Biochemistry in Rickets and Osteomalacia

Calcium N/low
Phosphate N/low
Alk phos High
PTH High

• Urine Phosphate High Glycosuria, aminoaciduria, high pH, proteinuria

Osteomalacia and phosphate

'can also get with renal phosphate loss, when calcium and Vitamin D levels are usually normal'

```
Renal
hypophosphataemia
X-linked hypophosphataemic Rickets
1;20,000
mutations in PHEX; do not destroy phosphaturic factor toddlers with leg deformity
enthesopathy, dentin anomalies
```

oncogenic osteomalacia

mesenchymal tumours produce FGF-23, causes phosphaturia and stops 1α OHase

Fanconis syndrome
Proximal renal tubular acidosis

Osteomalacia and FGF-23

Osteomalacia and FGF-23

Osteoporosis

Age Related Changes in Bone Mass¹

Age Related Changes in Bone Mass

Disproportionate loss of cancellous bone post-menopause

The osteoporosis problem

Oestrogen deficiency; bone changes

- Increases the activation frequency of remodelling units (ie number of both osteoclasts and blasts)
- Causes remodelling imbalance
 - Decreases osteoclast apoptosis, increases osteoblast apoptosis
 - Deeper and more resorption pits
 - Increased bone resorption (90%) compared to bone formation (45%)

Remodelling errors

- Trabecular perforation
- Cortical excess Haversian excavation
- Decreased osteocyte sensing

Molecular Action

Causes of Osteoporosis According to Probable Mechanism

High turnover — increased bone resorption greater than increased bone formation

Estrogen deficiency - primarily in postmenopausal women

Hyperparathyroidism

Hyperthyroidism

Hypogonadism in young women and in men

Cyclosponine (?)

Heparin

Low turnover — decreased bone formation more pronounced than decreased bone resorption

Liver disease - primarily primary biliary cirrhosis

Heparin

Age above 50 years

Increased bone resorption and decreased bone formation

Glucoconticoids

Biochemistry of osteoporosis

Serum biochemistry should all be normal

- 1. Check for Vit D deficiency
- 2. Check for secondary endocrine causes

Primary hyperparathyroidism PTH high
Primary hyperthyroidism free T3 high
TSH suppressed
Hypogonadism Testosterone low

- 3. Exclude multiple myeloma
- 4. May have high urine calcium

Bone Density

Why measure bone density?

We can!

Single best predictor of fracture risk BMD represents 70% of total risk

DXA

Dual energy X-ray absorptiometry

Measures transmission through the body of X-rays of two different photon energies

Enables densities of two different tissues to be inferred, i.e. bone mineral, soft tissue

> Radiation dose - 1-10 μSv Background -7 μSv CXR - 100 μSv

Definition of Osteoporosis

World Health Organisation 1994

T-score = <u>measured BMD – young adult mean BMD</u> young adult standard deviation

ie How many standard deviations are you off the average for a 25 year old?

T-score = -2.5 OSTEOPOROSIS -1to -2.5 OSTEOPAENIA <-1 NORMAL

Printout

BMD	T(30.0)		Z	
0.702	-2.02	76%	-1.68	79%
0.764	-2.40	74%	-2.01	78%
0.825	-2.35	76%	-1.95	79%
0.873	-2.21	78%	-1.79	82%
0.797	-2.27	76%	-1.88	79%
	0.702 0.764 0.825 0.873	0.702 -2.02 0.764 -2.40 0.825 -2.35 0.873 -2.21	0.702 -2.02 76× 0.764 -2.40 74× 0.825 -2.35 76× 0.873 -2.21 78×	0.702 -2.02 76x -1.68 0.764 -2.40 74x -2.01 0.825 -2.35 76x -1.95 0.873 -2.21 78x -1.79

How does risk of fracture correlate with this?

1 SD reduction = 2.5 increase in risk of fracture

Certain situations interfere with interpretation

- Degenerative change, osteoarthritis
- Vertebral fractures
- Metal artefacts
- Osteomalacia
- Vascular calcification
- Scoliosis
- Paget's disease

Who should we measure?

Presence of risk factors

- oestrogen deficiency
- corticosteroid treatment
- maternal history of hip fracture
- low body mass index
- other endocrine diseases, e.g. hyperparathyroidism
 thyrotoxicosis
- Malabsorption

Radiographic evidence of osteopenia and vertebral deformity Previous fragility fracture

I am of baight montred transposis

Bone Markers

In most bone diseases the bone cycle is disrupted

Markers of bone formation and resorption give us insight into activity

Bone formation; collagen synthesis

Alpha 1 and 2 chains of type I collagen produced by osteoblast

Proline and lysine residues hydroxylated

Bone formation; collagen synthesis

3 hydroxylysine molecules on adjacent tropocollagen fibrils condense to form a PYRIDINIUM ring linkage

Measurement of Osteoclast activity

Urine hydroxyproline

Urine Collagen crosslinks

Pyridinium (Pyd and Dpd)

N-terminal telopeptide (NTX)

C-terminal telopeptide (CTX)

Serum CTX and NTX

Tartrate resistant acid phosphatase

Uses of bone markers in osteoporosis?

1. Diagnosis of osteoporosis

2. Prediction of fracture risk.

3. Monitoring of treatment

Uses of bone markers in monitoring treatment

1. Monitoring of response to treatment with antiresorptive drugs.

> bone resorption markers fall in 4-6 weeks bone formation markers fall in 2-3 months

expect a 50% drop of NTx by 3 months

not only osteoporosis

Pagets

primary hyperparathyroidism

Problems with cross-links

1. Reproducibility

TABLE 6. Within subject reproducibility of bone markers

Marker	% CV
NTX	20.2
Dpy (HPLC)	62.9
Hyp	53.0
Osteocalcin	27.3
ALP	10.3

2. Positive association with age

3. Need to correct for Cr

Problems with cross-links

4. Diurnal variation in urine markers

Peak 4-8am

Measure 24 hr or 2nd urine

Measure osteoblast function/ bone formation

Serum alkaline phosphatase total

bone-specific

osteocalcin
propeptide of type 1 collagen
carboxyterminal PICP
aminoterminal PINP

BSAP

Types
tissue-specific form; liver vs bone
intestine, germ cell, placental forms
Role
essential for mineralisation
regulates concentrations of phosphocompounds
Uses
Consistent within an individual; t ½ 40 hours

Increased in Paget's disease

Osteomalacia

Bone metastases

Hyperparathyroidism

Hyperthyroidism

Alkaline phosphatase with age

Labs don't standardly give isoforms!

Tertiary hyperparathyroidism

Tertiary hyperparathyroidism

