Imperial College London

Introduction to Orthopaedic Biomechanics

Andrew Amis a.amis@imperial.ac.uk

Aims of this talk include

- The basic methods of analysing static equilibrium to discover the loads on joints and tissues;
- To demonstrate that the forces acting on internal structures, such as our joints, are much larger than the external forces acting on our bodies.
- Plus a glimpse of real complexities...

Static Equilibrium

- This analysis is based on Newton's laws,
- That "every action has an equal and opposite reaction",
- That "an object will persist in its state of motion or rest unless acted upon by a resultant force"
- That "when a force acts on an object it will cause it to accelerate in proportion to the size of the force and inversely to its mass".

There are several areas of mechanical analysis

- <u>Statics</u>: in which we analyse the state of equilibrium without reference to motion;
- <u>Kinematics</u>: in which we analyse the motion without reference to the forces acting;
- <u>Dynamics</u>: in which we analyse both the motion and the forces affecting the motion.

For static equilibrium, we must analyse both linear and rotational effects together:

- · Forces cause linear translations;
- Moments cause rotations.
- Both are *vectorial* variables: they must be defined by how large they are and also by their direction.
- Scalar variables, such as mass, do not have any inherent directionality.

Force

- Unit: the Newton.
- Defined as: The amount of force which, when acting on a body with a mass of 1 kg, will cause it to accelerate at a rate of 1 ms⁻²
- N.B.: Weight is a force, not a mass, due to the action of gravitational acceleration on the mass, so a mass of I kg has a weight of 9.81 N!

- Moments, or torques, cause a turning effect about an axis (e.g. a joint axis).
- The units of a moment are Nm.
- Thus, for a given force (N), its moment (Nm) increases as its distance (m) from the axis increases.
- It is vectorial: clockwise vs anticlockwise

Calculate the magnitude and direction of the tibio-talar joint force

We start by drawing the foot in isolation; This is called a *'Free-body diagram*'. It doesn't matter what forces are inside the free-body, all we need to do is to analyse all the forces and moments acting on it.

- 3-D reality: need to simultaneously ensure equilibrium about x,y,z axes;
- Many co-operating muscles how to assign tensions to each of them?
- Motion entails forces resulting from acceleration of masses such as limb segments: inertial effects.

The reduced head-stem offset did reduce the abductor muscle forces and the bending moment acting on the stem.

But it also reduced the moment arms of the muscles controlling internal/external rotation.

So the forces acting in the AP direction increased, and the reduced-offset stem fractured in AP bending!

09/01/2012

Thank you!