```
Imperial College
London
```

Introduction to Orthopaedic
Biomechanics

Andrew Amis
a.amis@imperial.ac.uk

Aims of this talk include

- The basic methods of analysing static equilibrium to discover the loads on joints and tissues;
- To demonstrate that the forces acting on internal structures, such as our joints, are much larger than the external forces acting on our bodies.
- Plus a glimpse of real complexities...

There are several areas of mechanical analysis

- Statics: in which we analyse the state of equilibrium without reference to motion;
- Kinematics: in which we analyse the motion without reference to the forces acting;
- Dynamics: in which we analyse both the motion and the forces affecting the motion.

For static equilibrium, we must analyse both linear and rotational effects together:

- Forces cause linear translations;
- Moments cause rotations.
- Both are vectorial variables: they must be defined by how large they are and also by their direction.
- Scalar variables, such as mass, do not have any inherent directionality.

Force

- Unit: the Newton.
- Defined as: The amount of force which, when acting on a body with a mass of 1 kg, will cause it to accelerate at a rate of 1 ms^{-2}
- N.B.: Weight is a force, not a mass, due to the action of gravitational acceleration on the mass, so a mass of I kg has a weight of 9.81 N !

Combining Forces by adding force vectors

- "Resultant"

So, what force is needed to restore equilibrium?

What force is required to restore equilibrium?

Moments: The magnitude of the force times the perpendicular distance from the line of action of the force to the axis.

What is the
moment of the 10
We must define + and - Here
clockwise is + So this force
causes a moment of -20 Nm

about the axis \quad| The force exerts |
| :--- |
| a moment of +40 |
| Nm about this |

Turning effects: Moments

- Moments, or torques, cause a turning effect about an axis (e.g. a joint axis).
- The units of a moment are Nm.
- Thus, for a given force (N), its moment (Nm) increases as its distance (m) from the axis increases.
- It is vectorial: clockwise vs anticlockwise

For rotational equilibrium, all the moments acting about an axis must sum to zero

For equilibrium: $+(80 \times 0.300)-(T$ biceps $\times 0.050)=0$.
So T biceps $=80 \times 0.300 / 0.050=480 \mathrm{~N}$

To ensure equilibrium, we most often examine the equilibrium of forces and also of moments acting on a body.

To simplify matters, we usually examine the force components acting in orthogonal directions: e.g. horizontal and vertical, after resolving the forces into these components:

$F x=F \cos \theta ; F y=F \sin \theta$

Horizontal equilibrium: what force F2, acting in the direction shown, will give equilibrium?

Special Cases in Equilibrium

- Three force problem
(If a force points at an axis, it has no moment about that axis)

Special Cases in Equilibrium

- Three force problem

So 3 forces must intersect at a point!

Calculate the magnitude and direction of the tibio-talar joint force

We start by drawing the foot in isolation; This is called a 'Free-body diagram'. It doesn't matter what forces are inside the free-body, all we need to do is to analyse all the forces and moments acting on it.

So far, we have only dealt with very simple cases: greater complexity arises in-vivo:
-3-D reality: need to simultaneously ensure equilibrium about x, y, z axes;

- Many co-operating muscles - how to assign tensions to each of them?
- Motion entails forces resulting from acceleration of masses such as limb segments: inertial effects.

The reduced head-stem offset did reduce the abductor muscle forces and the bending moment acting on the stem.

But it also reduced the moment arms of the muscles controlling internal/external rotation.
So the forces acting in the AP direction increased, and the reduced-offset stem fractured in AP bending!

Thank you!

